ENGĖNIEER

www.engenieer.com

Vector Operations (See Part A)

Addition:

- Use parallelogram law or triangle rule
- Parallelogram law: Tail to tail

- Triangle rule: Head to tail

$$
R=A+B
$$

Subtraction:

- Use parallelogram law or triangle rule

Parallelogram law

Triangle rule

Resultant Force (See Part A)

i) Graphical Method:

- Use the parallelogram law or triangle rule (see part B, ii):
- Important equations to remember: Law of Sine and Cosine

$R=A+B$
Parallelogram law
(-) Note: Use this method to resolve the force or vector into two components. For resultant force, use the next method because it is faster.

ii) Algebraic Method:

- Use Algebraic sum of the x and y axis: $F_{R}=\sqrt{F_{x}{ }^{2}+F_{y}^{2}}{ }^{2}, \boldsymbol{\theta}=\tan ^{-1}\left(\frac{\mathrm{~F}_{\mathrm{y}}}{\mathrm{F}_{\mathrm{x}}}\right)$
- Important equations to remember: Trigonometry Functions

Similar Triangles:

$$
\begin{aligned}
& \frac{\mathrm{F}_{\mathrm{x}}}{4}=\frac{\mathrm{F}}{5}=\frac{\mathrm{F}_{\mathrm{y}}}{3} \\
& \theta=\tan ^{-1}=\frac{\mathrm{Opp}}{\text { Adj }}=\frac{\mathrm{F}_{\mathrm{y}}}{\mathrm{~F}_{\mathrm{x}}}
\end{aligned}
$$

[^0]
Cables and Pulleys (See Part B)

A. Steps For Analysis:
i) Draw the Free Body Diagram (FBD)
ii) Identify all forces
iii) Equilibrium equations: $\sum \mathrm{F}_{\mathrm{x}}=0, \sum \mathrm{~F}_{\mathrm{y}}=\mathbf{0}$.

Moment of Force (See Part C)

$$
M=r F
$$

- \mathbf{F} is the force and \mathbf{r} is the moment arm, which is the perpendicular distance to the line of action of the force.

Examples:

$$
M=r F
$$

$M=r F=(0) F=0$
Same line of action!

Types of Supports (See Part C)

i. Roller:
\diamond Reaction prevents translation in the vertical direction.
\diamond Reaction force acts perpendicular to the surface.

ii. Pin or hinge:
\diamond Reaction prevents translation in any direction.
\diamond The resultant reaction is broken into \mathbf{y} and \mathbf{x} components.

iii. Fixed:
\diamond Reaction prevents translation and rotation.
\diamond Reaction has a force (in the \mathbf{x} and \mathbf{y} direction) and a moment.

Trusses (See Part D)

(I) Identifying Zero Force Members

i) If two noncollinear members are connected to a joint that is not subjected to any external loads or reactions, then both members are zero.
ii) If three members, two of which are collinear and are connected to a joint that is not subjected to any external loads or reactions, then the force member that is not collinear is zero.
(II) Fast Method Of Joint (FMJ)

Four Rules:

1. Equilibrium Equations (Mentally)
2. Break diagonal vectors into 2 components
3. Draw vectors head-head or tail-tail
4. Every action, there is an equal and opposite reaction

(III) Forces on members:
\diamond If member elongates \longrightarrow Tension (Force pulling the joint)
\diamond If member shrinks \longrightarrow Compression (Force pushing into the joint)
(IV) Method of Section

Cut the truss where we want to determine the forces.

- Draw Free Body Diagram.
- Take moment where two unknown forces intersect, so we have only one unknown in the moment equation.

Centroids (See Part E)

Procedure For Analysis: Given A Function

1. Draw a small vertical or a horizontal rectangle
2. Find the area of the small rectangle, $\mathbf{A}=$ base \mathbf{x} height
3. Find $\overline{\boldsymbol{x}}$ and $\overline{\boldsymbol{y}}$
4. Plug in to the equation: $\mathbf{x}_{\mathbf{c}}=\frac{\int \bar{x} \mathrm{dA}}{\mathrm{A}}, \mathbf{y}_{\mathbf{c}}=\frac{\int \bar{y} \mathrm{dA}}{\mathrm{A}}$

Procedure For Analysis: Given Geometric Shapes

1. Break the drawing into geometric parts.
2. Find the centroid, $\mathbf{x}_{\mathbf{n}}$ or $\mathbf{y}_{\mathbf{n}}$ for each geomteric part \& always with respect to the datum $(0,0)$!
3. Find the area of the geometric shapes.
4. Plug in to the equations: $x_{c}=\frac{\sum x_{n} a_{n}}{A}, y_{c}=\frac{\sum y_{n} a_{n}}{A}$

Moment of Inertia (See Part F)

Procedure For Analysis:

1. Break the drawing into geometric parts.
2. Find the moment of inertia for each geometric shape.
3. Find $\mathbf{d}_{\mathbf{x}}$ and $\mathbf{d}_{\mathbf{y}}$, if necessary!
4. Plug in to the equations: $\mathbf{I}_{\mathbf{x}}{ }^{\prime}=\mathbf{I}_{\mathbf{x c}}+\mathbf{d}^{\mathbf{2}}{ }_{\mathbf{y}} \mathbf{A}, \mathbf{I}_{\mathbf{y}}{ }^{\prime}=\mathbf{I}_{\mathbf{y c}}+\mathbf{d}^{\mathbf{2}}{ }_{\mathbf{x}} \mathbf{A}$

Centroid about x \& y axis	I_{x} or I_{y}	I_{xc} or I_{yc}	d_{x} or d_{y}
Shape on x or y axis	Use These Equations	Not Applicable	Zero - shape is on the axis, there is NO distance!
Shape NOT on x or y axis	Not Applicable	Use These Equations	Distance from x or y axis to the centroid of the small shape.
Centroid about x \& y centroidal axis	I_{x} or I_{y}	I_{xc} or I_{yc}	d_{x} or d_{y}
Shape is symmetric	Not Applicable	Use These Equations	Zero - centroid of the small shape is at the same point as the centroid of the whole shape!
Shape is NOT symmetric (find centroid x_{c} and y_{c})	Not Applicable	Use These Equations	Distance from centroid of the small shape to the centroid of the whole shape! (Also, use fast method, e.g. $\mathbf{d}_{\mathbf{x}}=\left(\mathbf{x}_{\mathbf{c}}-\mathbf{x}_{\mathbf{n}}\right)$, see examples in the course)

Friction Force (See Part G)

Free body diagram:

- Surface or floor exerts a normal force and a frictional force.
- Frictional Force always tangent to the surface.
- For equilibrium, normal force acts upward and perpendicular to the surface to balance out the weight.
- Frictional force acts opposite of the force \mathbf{P} to reach equilibrium and to prevent motion to the right.

Friction Forces:

- F, the static frictional force, is when equilibrium is reached.
- F, the limiting static frictional force, is when the maximum value is reached but still maintaining equilibrium.
- $\mathrm{F}_{\mathbf{k}}$, the kinetic frictional force, is when an object starts moving and sliding occurs

Procedure For Analysis:

i) Draw the Free Body Diagram (FBD)
ii) Identify all forces
iii) Equilibrium and friction force equations: $\sum \mathbf{F}_{\mathbf{x}}=\mathbf{0}, \sum \mathbf{F}_{\mathbf{y}}=\mathbf{0}, \sum \mathbf{M}=\mathbf{0}, \mathbf{F}=\mu_{\mathrm{s}} \mathbf{N}$

- Note: Normal force is NOT Always equal to weight.

Belt Friction (See Part G)

- $\mathrm{F}_{1}=\mathrm{F}_{2} \boldsymbol{e}^{\mu \boldsymbol{\theta}}$, where $\mathrm{F}_{1}>\mathrm{F}_{\mathbf{2}}$

[^0]: Equations on page 72, Reference Handbook

